# Low density lipoprotein metabolism and lipoprotein cholesterol content in southwestern American Indians<sup>1</sup>

# Marc B. Garnick,<sup>2</sup> Peter H. Bennett,<sup>3</sup> and Terry Langer<sup>4</sup>

Phoenix Clinical Research Section, National Institute of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Phoenix, AZ 85016

Abstract The prevalence of ischemic heart disease is significantly lower in southwestern American Indians than in Caucasians. To investigate this difference, the metabolism of low density lipoprotein apoprotein (apo-LDL) and plasma lipoprotein cholesterol composition were studied in 10 southwestern American Indians and 5 Caucasian controls. The plasma concentration of LDL cholesterol in American Indians was  $88 \pm 5 \text{ mg/dl}$  (mean  $\pm \text{ SEM}$ ) and  $111 \pm 7 \text{ mg/dl}$ in Caucasians. The corresponding values of apo-LDL concentrations were  $53 \pm 3 \text{ mg/dl}$  and  $77 \pm 4 \text{ mg/dl}$ , respectively. Conversely, high density lipoprotein cholesterol (HDL) concentrations were significantly higher in American Indians (56  $\pm$  4 mg/dl) than in Caucasians (37  $\pm$  3 mg/dl). There were no statistically significant differences in the biological half-life of apo-LDL, calculated from the second exponential of the plasma die-away curve  $(3.06 \pm 0.15 \text{ days})$ vs.  $3.45 \pm 0.11$  days), the fractional catabolic rate of apo-LDL  $(0.432 \pm 0.01 \text{ vs. } 0.411 \pm 0.01)$ , or the fraction of total exchangeable apo-LDL in the intravascular space ( $70 \pm 1$  vs.  $67 \pm 3\%$ ). As derived from the absolute catabolic rate under steady-state conditions, the synthetic rate of apo-LDL in American Indians was, however, significantly lower than in Caucasians  $(334.6 \pm 7.8 \text{ mg/m}^2 \text{ per day vs. } 507.2 \pm 6.7$ mg/m<sup>2</sup> per day; P < 0.001). These data indicate that the lower levels of plasma LDL cholesterol and apo-LDL in American Indians are due to a reduced rate of apo-LDL synthesis rather than to differences in fractional catabolic rates. These differences, in combination with higher HDL cholesterol levels, may contribute to the lower prevalence of ischemic heart disease in American Indians.

Supplementary key words low density lipoprotein · atherosclerosis · heart disease · high density lipoprotein · cholesterol · American Indians

Southwestern American Indians have a lower prevalence of coronary artery disease (CAD) and lower plasma cholesterol levels than Caucasians (1-10). Several studies have indicated that the overall prevalence of myocardial infarction and electrocardiographic evidence of ischemic heart disease in southwestern Indians is only 25% that of the Caucasian population studied in Framingham (8). Not only are the total plasma cholesterol levels lower in southwestern American Indians than in Caucasians, but they tend to rise little with advancing age (11). Measurement of cholesterol levels in Pima Indians has shown that values are 50–60 mg/dl lower in Indians than in Caucasians after the third decade. Despite their lowered prevalence of coronary artery disease, certain tribes of the Southwest (Pima) have the world's highest prevalence of diabetes mellitus (12); yet the prevalence of coronary artery disease in Pimas with long-standing diabetes is still lower than in nondiabetic Caucasians (13).

Elevated levels of low density lipoprotein (LDL), a major cholesterol-containing lipoprotein, have recently been implicated in the pathogenesis of arteriosclerotic cardiovascular disease. In patients with familial hypercholesterolemia (FH), reduced catabolism and increased synthesis of apoprotein LDL (apo-LDL, the protein moiety of LDL) is a genetic defect resulting in elevated levels of LDL cholesterol and apo-LDL (14–16) which, in turn, may be responsible for their premature coronary artery disease. In addition, decreased levels of high density lipoprotein (HDL) apoprotein and HDL cholesterol may also be involved in the development of CAD (17–19).

The low prevalence of CAD and low plasma cholesterol levels in American Indians suggested the need to

Abbreviations: apo-LDL, low density lipoprotein apoprotein; HDL, high density lipoprotein; VLDL, very low density lipoprotein; FCR, fractional catabolic rate; CAD, coronary artery disease; FH, familial hypercholesterolemia; SGOT, serum glutamic oxaloacetic transaminase, also known as aspartate aminotransferase; SGPT, serum glutamic pyruvic transaminase, also known as alanine aminotransferase; VDRL, Venereal Disease Research Laboratory flocculation test for syphilis.

<sup>&</sup>lt;sup>1</sup> Presented in part at the meeting of the American Heart Association, Miami Beach, Florida, November 14, 1976.

<sup>&</sup>lt;sup>2</sup> Present address: Sidney Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.

<sup>&</sup>lt;sup>3</sup> Address reprint requests to Dr. P. H. Bennett, PCRS, NIAMDD, 4212 North 16th Street, Phoenix, AZ 85016.

<sup>&</sup>lt;sup>4</sup> Present address: Hospital of the University of Pennsylvania, Philadelphia, PA 19104.

TABLE 1. Clinical data on Caucasian subjects during <sup>125</sup>I-LDL turnover studies

| Age | e Sex                                   | Weight                                                | Height                                                                                                                                                                                                                           | Calorie<br>Intake                                                                                                                                                                                                                                                                                                      | Polyunsaturated:<br>Saturated Fat<br>Ratio                                                                   | Plasma Cholesterol                                                                                                                                                         |                                                         |                                                         | DI                                                      | Plasma                                                  |
|-----|-----------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
|     |                                         |                                                       |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                              | Total                                                                                                                                                                      | LDL                                                     | HDL                                                     | Plasma<br>Triglyceride                                  | lipid                                                   |
| yr  |                                         | kg                                                    | cm                                                                                                                                                                                                                               | cal/day                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                                                                                            | mg/dl                                                   |                                                         | mg/dl                                                   | mg/dl                                                   |
| 26  | F                                       | 61                                                    | 164                                                                                                                                                                                                                              | 2368                                                                                                                                                                                                                                                                                                                   | 2.69                                                                                                         | 170                                                                                                                                                                        | 111                                                     | 50                                                      | 53                                                      | 181                                                     |
| 27  | F                                       | 66                                                    | 170                                                                                                                                                                                                                              | 1971                                                                                                                                                                                                                                                                                                                   | 2.77                                                                                                         | 147                                                                                                                                                                        | 106                                                     | 33                                                      | 62                                                      | 155                                                     |
| 27  | Μ                                       | 61                                                    | 176                                                                                                                                                                                                                              | 2315                                                                                                                                                                                                                                                                                                                   | 2.21                                                                                                         | 149                                                                                                                                                                        | 94                                                      | 35                                                      | 83                                                      | 181                                                     |
| 31  | Μ                                       | 60                                                    | 172                                                                                                                                                                                                                              | 2633                                                                                                                                                                                                                                                                                                                   | 2.74                                                                                                         | 186                                                                                                                                                                        | 136                                                     | 31                                                      | 96                                                      | 239                                                     |
| 24  | М                                       | 73                                                    | 170                                                                                                                                                                                                                              | 3486                                                                                                                                                                                                                                                                                                                   | 2.72                                                                                                         | 162                                                                                                                                                                        | 109                                                     | 38                                                      | 69                                                      | 153                                                     |
|     |                                         |                                                       |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                              | $163 \pm 7$                                                                                                                                                                | $111 \pm 7$                                             | $37 \pm 3$                                              | $73 \pm 8$                                              | $182 \pm 16$                                            |
|     | Age<br>yr<br>26<br>27<br>27<br>31<br>24 | Age Sex<br>yr<br>26 F<br>27 F<br>27 M<br>31 M<br>24 M | Age         Sex         Weight           yr         kg           26         F         61           27         F         66           27         M         61           31         M         60           24         M         73 | Age         Sex         Weight         Height           yr         kg         cm           26         F         61         164           27         F         66         170           27         M         61         176           31         M         60         172           24         M         73         170 | AgeSexWeightHeightCalorie<br>Intakeyrkgcmcal/day26F61164236827F66170197127M61176231531M60172263324M731703486 | AgeSexWeightHeightCalorie<br>IntakePolyunsaturated:<br>Saturated Fat<br>Ratioyrkgcmcal/day26F6116423682.6927F6617019712.7727M6117623152.2131M6017226332.7424M7317034862.72 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

further characterize their LDL metabolism and lipoprotein cholesterol composition. The present report describes these parameters and provides evidence for a diminished LDL synthetic rate, decreased LDL cholesterol and apo-LDL levels, and elevated HDL cholesterol levels in American Indians.

### **METHODS**

As volunteer subjects, five normal Caucasians (3 men and 2 women) and 10 southwestern American Indians (7 men and 3 women of full Indian ancestry) were studied. The weights of the Indians were significantly larger than those of the Caucasians, but were representative of a typical Indian sample. The clinical data and caloric intake of these subjects during these studies are summarized in Tables 1 and 2.

A medical history, physical examination, and the following laboratory tests were performed on admission and found to be normal in all subjects: urinalysis, complete blood count, prothrombin time, serum electrolytes, blood urea nitrogen, serum creatinine, fasting and 2-hr postprandial blood glucose, serum uric acid, SGOT, SGPT, bilirubin, alkaline phosphatase, serum protein electrophoresis, total plasma cholesterol, triglycerides, thyroxine (T<sub>4</sub>), triiodothyronine resin uptake (T<sub>3</sub>RU), urine culture, VDRL, chest X-ray, hepatitis-associated antigen, and electrocardiogram. None of the female subjects was pregnant, as determined by menstrual history, pelvic examination, and a negative pregnancy test. None of the subjects ingested drug medication during the study period. There was no family history of cardiovascular disease or hyperlipoproteinemia in any subjects.

#### **Protocol**

All volunteers lived on the metabolic ward of the Phoenix Clinical Research Section during these studies. A high polyunsaturated fat study diet was consumed for 16-35 days before initiating low density lipoprotein isolation; the diet was continued throughout the studies. The caloric intake and daily cholesterol intake remained constant throughout the period of the turnover study. H )f total calories were der Ъ from fat, and 38-42% y cholesterol intake was 30 y state was determined by ıt al and plasma lipid and lip l. plasma cholesterol, LDL VLDL cholesterol, trigly

| Eighteen<br>ived fro<br>5 from 6<br>00 mg. Ev<br>measure<br>poprotein<br>choleste<br>cerides, a<br>DL turnove | to twenty pe<br>m protein,<br>carbohydrate<br>vidence for the<br>ment of bod<br>n levels. Fast<br>rol, HDL che<br>and plasma p | ercent o<br>38–429<br>es. Dail<br>ne stead<br>y weigh<br>ing tota<br>blestero<br>bhospho |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| erol                                                                                                          | Plaamo                                                                                                                         | Plasma                                                                                   |
| HDL                                                                                                           | Triglyceride                                                                                                                   | lipid                                                                                    |
|                                                                                                               | mg/dl                                                                                                                          | mg/dl                                                                                    |
| 48                                                                                                            | 92                                                                                                                             | 168                                                                                      |
| 36                                                                                                            | 101                                                                                                                            | 940                                                                                      |

| Initials/Tribe |     |     |        |            | Calorie<br>Intake | Polyunsaturated:<br>Saturated Fat<br>Ratio | Plas        | Plasma Cholesterol |            |              | Plasm |
|----------------|-----|-----|--------|------------|-------------------|--------------------------------------------|-------------|--------------------|------------|--------------|-------|
|                | Age | Sex | Weight | Height     |                   |                                            | Total       | LDL                | HDL        | Triglyceride | lipid |
|                | yr  |     | kg     | c <b>m</b> | cal/day           |                                            |             | mg/dl              |            | mg/dl        | mg/d  |
| GR/Pima        | 26  | F   | 86     | 160        | 2548              | 2.70                                       | 148         | 81                 | 48         | 92           | 168   |
| DI/Pima        | 22  | F   | 98     | 155        | 2784              | 2.28                                       | 141         | 83                 | 36         | 101          | 240   |
| SS/Pima        | 25  | F   | 112    | 163        | 2849              | 3.22                                       | 165         | 95                 | 47         | 102          | 290   |
| HS/Navajo      | 30  | М   | 112    | 179        | 4050              | 2.26                                       | 157         | 85                 | 52         | 106          | 118   |
| SP/Hopi        | 31  | М   | 71     | 164        | 2664              | 2.98                                       | 163         | 76                 | 68         | 132          | 106   |
| TK/Pima        | 28  | М   | 99     | 170        | 3313              | 1.99                                       | 151         | 58                 | 71         | 117          | 167   |
| MH/Hopi        | 24  | М   | 81     | 172        | 2818              | 2.12                                       | 186         | 94                 | 73         | 97           | 243   |
| HI/Pima        | 61  | М   | 61     | 162        | 2178              | 2.91                                       | 168         | 110                | 37         | 103          | 218   |
| FC/Pima        | 22  | м   | 97     | 160        | 2868              | 2.10                                       | 187         | 96                 | 68         | 108          | 220   |
| GS/Pima        | 27  | M   | 109    | 183        | 3109              | 3.28                                       | 181         | 105                | 56         | 94           | 226   |
| Mean ± SEM     |     |     |        |            |                   |                                            | $165 \pm 5$ | $88 \pm 5$         | $56 \pm 4$ | $105 \pm 4$  | 220 ± |

TABLE 2. Clinical data on southwestern American Indian subjects during <sup>125</sup>I-LI

18

**OURNAL OF LIPID RESEARCH** 

lipids were measured serially from the onset of LDL isolation to completion of turnover studies. All subjects received 1.0 g of supersaturated potassium iodide daily (SSKI 1 g/ml) in three divided doses prior to and during the <sup>125</sup>I-LDL turnover studies to prevent radioactive iodide uptake by the thyroid gland. All gave written informed consent. The Clinical Research Committees and Radiation Committee of the National Institutes of Health and the Phoenix Area Research Committee of the Indian Health Service approved all investigations.

# LDL isolation

Approximately 150 ml of blood was collected in a sterile, pyrogen-free plastic bag (Fenwal Laboratories, Buena Park, CA) containing a 1% solution of disodium ethylenediaminetetraacetic acid (EDTA). The plasma was immediately separated by centrifugation at 4°C and its density adjusted to 1.019 g/ml by the addition of a solution of NaCl-KBr of d 1.085 g/ml; it was then centrifuged in a Beckman 60 Ti rotor (Beckman Instruments, Inc., Palo Alto, CA) at 60,000 rpm for 14 hr (14). After the infranate was removed by tube slicing and its density was adjusted to 1.063 g/ml by the addition of a solution of NaCl-KBr of 1.35 g/ml, it was subjected to further ultracentrifugation for 16 hr at 60,000 rpm. The supernate, containing lipoprotein of density range 1.019-1.063 g/ml, was isolated by tube slicing and ultracentrifuged for 12 hr at 65,000 rpm in a Beckman 65 rotor after carefully overlaying the LDL with a NaCl-KBr solution of d = 1.063 g/ml. The supernate was then reisolated and spun again for 12 hr at 65,000 rpm with the 65 rotor at a density of 1.063 g/ml. The concentrated LDL was then dialyzed for 3 hr against 41 of 0.15 M NaCl containing 0.1% EDTA, pH 7.4, to remove the KBr and return the preparation to plasma density. An aliquot was taken for protein determination (20).

Each preparation of LDL was pure and free of contaminating lipoproteins and other serum protein as determined by agarose gel immunoelectrophoresis employing specific antisera against high density (alpha) and low density (beta) apoproteins, whole human serum, albumin, and gamma globulin (14) (Behring Diagnostics, Somerville, NJ). Lipoprotein Lp(a) was not measured during the course of these investigations (21).

LDL apoprotein was radioiodinated using a modification of McFarlane's iodine monochloride technique (22). Purified LDL protein (8–12 mg/ml) in a volume of 1 ml was labeled with carrier-free <sup>125</sup>I at 4°C in 1.0 M glycine buffer, pH 10. The efficiency of iodination was 18–25%. The reaction at this pH maximizes protein binding and minimizes lipid binding of the label (14). Unbound iodine was removed by dialysis against a total of 101 of 0.15 M NaCl, 0.1% Na<sub>2</sub>EDTA, pH 7.4, divided into a series of smaller volumes. The percentage of free <sup>125</sup>I was determined by precipitation with 10% trichloroacetic acid and 5% phosphotungstic acid in the presence of carrier albumin or plasma. Lipid labeling of LDL was determined by extraction with chloroform-methanol 2:1 (23).

The percentage of <sup>125</sup>I attached to the peptide moiety of LDL averaged 95.5%, while lipid labeling accounted for an average of 3.7% and free <sup>125</sup>I for 0.8%. The mobility of radiolabeled LDL was unchanged as detected by immunoelectrophoresis after iodination.

Immediately after dialysis of the <sup>125</sup>I-LDL, sterile human serum albumin (25%) and sterile saline were added; each dilution contained 35 mg/ml of albumin and approximately 12–15  $\mu$ Ci/ml of <sup>125</sup>I-LDL. The preparation was then sterilized by Millipore filtration (0.45  $\mu$ m) (Millipore Corp., Bedford, MA), and tested for sterility and pyrogenicity before in vivo use (24). The labeled LDL was ready for reinfusion 120 hr after the initial venipuncture.

At the beginning of the turnover study, fasting supine subjects received 20-35  $\mu$ Ci of autologous <sup>125</sup>I-LDL in a volume of 1-2 ml (1-2 mg LDL protein) through an intravenous saline infusion. Thereafter, 10-ml blood samples were obtained in glass tubes (containing EDTA) from a vein in the opposite arm at 10 min ("zero time"), 1, 2, 4, 8, 12, 24, 32, 48, 56, 72 hr, and then daily (AM, fasting) for 14 or 21 days. Forty ml of blood were obtained on days 2, 5, 8, 11, 14, and 17 for determination of LDL, HDL, and VLDL cholesterol, LDL apoprotein, plasma triglyceride, and phospholipid. T4 and T3 resin uptake were determined on days 7 and 14 after LDL injection in several subjects. Twenty-four-hour urine specimens were collected in glass jars to which KI, NaHSO3, and NaOH were added to minimize volatilization of <sup>125</sup>I (14). During the first 72 hr of the Caucasian studies, each voided urine sample was collected in a separate glass jar in order to characterize further the early excretion of the radioactivity. Plasma and urine aliquots were counted for radioactivity at the end of each respective study in a Packard Autogamma spectrometer (Packard Instrument Co., Inc., Downers Grove, IL). There was no residual <sup>125</sup>I activity in the intravenous tubing after LDL injection.

# Total plasma cholesterol, triglyceride, and phospholipid determinations

Total plasma cholesterol was determined daily and total plasma triglyceride was determined serially throughout each study using the AutoAnalyzer AAII (Technicon Instruments Co., Tarrytown, NY) (25). Plasma phospholipids were determined serially using previously published methods (26).

Fig. 1. Comparison of apo-LDL concentration values, total and

lipoprotein cholesterol values, and apo-LDL pool size between Indians and Caucasians. Total cholesterol values are similar, but

statistically significant differences are noted in all other parameters.

# Lipoprotein cholesterol and apoprotein determinations

Horizontal line represents mean value.

Very low density lipoprotein (VLDL) and intermediate density lipoprotein were removed after ultracentrifugation in a Beckman type 65 rotor (Beckman Instruments, Inc., Palo Alto, CA) at 60,000 rpm for 14 hr at d 1.019 g/ml. The infranate was then adjusted to 1.063 g/ml and ultracentrifuged for 16 hr at 60,000 rpm, allowing separation of the LDL fraction from the HDL fraction. These two fractions were then isolated by tube slicing. The cholesterol determination was performed in each fraction (VLDL, LDL, HDL). HDL was the only lipoprotein in the density range >1.063 g/ml, as determined by immunoelectrophoresis. The heparin-manganese chloride precipitation method for HDL-cholesterol was also used (26). Apoprotein-LDL was determined by the method of Lowry et al. (20). A protein:cholesterol ratio for LDL was then determined in each sample on separate days.

### **Data analysis**

The kinetics of LDL turnover were fitted to the mathematical model of an open two-compartment system, described by Mathews and Nosslin (27, 28). A regression line was computed for the log linear portion of the plasma die-away curve; the y intercept and slope of the peeled exponential of this line were determined to obtain the fractional catabolic rate (FCR) of apo-LDL, percentage of apo-LDL in the intravascular space, and biological half-life of intravascular apo-LDL. The ratio of the urinary excretion of <sup>125</sup>I radioactivity to that remaining in the plasma (U/P ratio) from day 2 to the end of the study pro-

vided an independent measurement of the FCR. Plasma volume (PV) was determined by isotopic dilution using the 10-min plasma sample (14). The synthetic rate (SR) of apo-LDL is equal to the absolute catabolic rate under steady-state conditions. The synthetic rate of apo-LDL, expressed as milligrams of apo-LDL synthesized daily, was calculated using the formula SR = (PV)(FCR)(Apo-LDL concentration). The absolute catabolic rate was also expressed as mg apo-LDL catabolized/m<sup>2</sup> body surface per day (14).

#### Statistical analysis

The statistical significance of differences between Indian and Caucasian mean values of the lipoprotein parameters was determined by analysis of variance using the Statistical Analysis System program (29).

#### RESULTS

All subjects remained in a steady state throughout the LDL isolation period and the period during which the turnover studies were performed. During this period each subject received a constant diet and caloric intake, maintained a steady weight  $(\pm 0.4 \text{ kg})$ , and had similar plasma lipid and lipoprotein levels throughout the period of the study.

# Lipid and lipoprotein parameters in Caucasians and Indians (Tables 1–4, Fig. 1)

Values of apo-LDL (52  $\pm$  3 mg/dl (Table 4) and LDL cholesterol ( $88 \pm 5 \text{ mg/dl}$ ) (Table 2) were significantly lower in the Indians than in Caucasians (77  $\pm$  4 mg/dl and  $111 \pm 7 mg/dl$ , respectively) (Tables 3 and 1), while total plasma cholesterol values were similar. HDL cholesterol values ( $56 \pm 4 \text{ mg/dl}$ ) (Table 2) were significantly higher in the Indians than in the Caucasians  $(37 \pm 3 \text{ mg/dl})$  (Table 1). The percentage of total cholesterol represented by HDL cholesterol was significantly higher in the Indians, while that of LDL cholesterol was significantly lower (see Fig. 3). The apo-LDL pool size (Fig. 1) [product of (plasma volume)(apo-LDL concentration)] was also significantly lower in the Indians (1560  $\pm$  103 mg) than in Caucasians (2143  $\pm$  66 mg). Statistically significant higher plasma triglyceride levels were noted among the more obese Indian volunteers.

# <sup>125</sup>I-LDL metabolic parameters in Caucasians and Indians (Tables 3 and 4, Fig. 2)

The synthetic rate of apo-LDL, expressed as mg apo-LDL/day or mg/m<sup>2</sup> per day was  $677 \pm 54$  mg/day or  $334.6 \pm 7.8$  mg/m<sup>2</sup> per day in the Indians. Under steady-state conditions, this synthetic rate is indicative of the absolute catabolic rate. These rates were signifi-



BMB

TABLE 3. Metabolic parameters for <sup>125</sup>I-labeled LDL turnover studies—Caucasians

| <u> </u>       |                  |                   |                                            | FC               | CR <sup>6</sup>  | T½ for<br>Exponential<br>Decay <sup>e</sup> |              |                 |
|----------------|------------------|-------------------|--------------------------------------------|------------------|------------------|---------------------------------------------|--------------|-----------------|
| Initials       | Plasma<br>Volume | Plasma<br>apo-LDL | Intravascular<br>Distribution <sup>a</sup> | (a)              | (b)              | (c)                                         | Catabolisn   | n of apo-LDL    |
|                | ml               | mg/dl             | %                                          |                  |                  | days                                        | mg/day       | mg/m²/day       |
| Dila           | 2793             | 79                | 62.6                                       | 0.381            | 0.322            | 3.84                                        | 841          | 509.7           |
| BĬ             | 3005             | 74                | 61.5                                       | 0.420            | 0.323            | 3.58                                        | 934          | 530.7           |
| IŇ             | 2764             | 68                | 69.4                                       | 0.398            | 0.347            | 3.28                                        | 748          | 429.9           |
| ĬF             | 2459             | 70                | 77.0                                       | 0.402            | 0.360            | 3.26                                        | 890          | 523.5           |
| ТМ             | 3005             | 73                | 62.4                                       | 0.455            | 0.407            | 3.31                                        | 998          | 542.4           |
| Mean $\pm$ SEM | $2805 \pm 100$   | 77 ± 4            | $67 \pm 3$                                 | $0.411 \pm 0.01$ | $0.351 \pm 0.02$ | $3.45 \pm 0.11$                             | $882 \pm 42$ | $507.2 \pm 6.2$ |

<sup>a</sup> Percent of apo-LDL contained in intravascular space.

<sup>b</sup> Fraction of the intravascular apo-LDL catabolized each day: (a) calculated from the plasma die-away curve; (b) calculated from the U/P ratio.

<sup>c</sup> Calculated from the second (c) exponential of the plasma die-away curve. (c) Represents the biological half-life of apo-LDL.

cantly lower than Caucasian rates (882  $\pm$  42 mg/day or 507.2  $\pm$  6.7 mg/m<sup>2</sup> per day; P < 0.001). No significant differences were found in the percentage of apo-LDL in the intravascular space, fractional catabolic rate or apo-LDL (fraction or intravascular pool of apo-LDL catabolized/daily), or the biological half-life of apo-LDL, as calculated from the second exponential of the plasma die-away curve.

# Urinary:plasma (U/P) ratios of <sup>125</sup>I-LDL (Table 5, Fig. 4)

The fractional catabolic rates of apo-LDL (the fraction of the intravascular pool of apo-LDL catabolized daily) derived from the urinary plasma ratio determinations were in reasonably good agreement with the fractional catabolic rates derived independently from the plasma die-away curves, but in all studies, the U/P determination gave slightly lower results. The U/P ratios of radioactivity also declined with time, after the initial delay and peak in excretion of radioactivity.

## DISCUSSION

These studies are consistent with the hypothesis that southwestern American Indians have a reduced synthetic rate of apo-LDL, lower plasma values of apo-LDL and LDL cholesterol, and higher values of HDL cholesterol than Caucasians with similar cholesterol levels. No differences in these parameters were found between the sexes of either race, confirming a previous finding by one of us (14). Because elevated levels of LDL cholesterol may predispose to coronary artery disease, the present findings of both lower apo-LDL and LDL cholesterol provide a possible explanation for the diminished prevalence of this disease among American Indians.

 TABLE 4. Metabolic parameters for <sup>125</sup>I-labeled LDL turnover studies—Indians

| Initials   |                  |                   |                                            | FCR <sup>b</sup> |                  | T½ for<br>Exponential<br>Decay <sup>e</sup> |                                                |                 |
|------------|------------------|-------------------|--------------------------------------------|------------------|------------------|---------------------------------------------|------------------------------------------------|-----------------|
|            | Plasma<br>Volume | Plasma<br>apo-LDL | Intravascular<br>Distribution <sup>a</sup> | (a)              | (b)              | (c)                                         | Rate of Synthesis and<br>Catabolism of apo-LDL |                 |
|            | ml               | mg/dl             | %                                          |                  | <u> </u>         | days                                        | mg/day                                         | mg/m²/day       |
| GR         | 2722             | <b>4</b> 9        | 72.7                                       | 0.444            | 0.428            | 2.74                                        | 592                                            | 313.2           |
| DJ         | 2929             | 50                | 68.5                                       | 0.527            | 0.474            | 2.68                                        | 772                                            | 393.9           |
| SŠ         | 3019             | 52                | 69.6                                       | 0.528            | 0.432            | 2.43                                        | 829                                            | 385.6           |
| HS         | 3922             | 50                | 64.2                                       | 0.449            | 0.390            | 3.42                                        | 880                                            | 384.3           |
| SP         | 2383             | 48                | 77.1                                       | 0.350            | 0.302            | 3.72                                        | 400                                            | 226.0           |
| ТК         | 3466             | 33                | 72.1                                       | 0.459            | 0.459            | 2.48                                        | 525                                            | 250.0           |
| MH         | 2928             | 56                | 73.6                                       | 0.367            | 0.343            | 3.30                                        | 602                                            | 310.3           |
| HI         | 2123             | 66                | 68.4                                       | 0.382            | 0.350            | 3.54                                        | 538                                            | 328.1           |
| FČ         | 3267             | 58                | 70.9                                       | 0.378            | 0.365            | 3.52                                        | 716                                            | 358.0           |
| GS         | 3479             | 59                | 67.6                                       | 0.444            | 0.436            | 2.82                                        | 911                                            | 396.1           |
| Mean ± SEM | $3024 \pm 170$   | $52 \pm 3$        | $70 \pm 1$                                 | $0.432 \pm 0.01$ | $0.397 \pm 0.01$ | $3.06 \pm 0.15$                             | 677 ± 54                                       | $334.6 \pm 7.8$ |

<sup>a</sup> Percent of apo-LDL contained in intravascular space.

<sup>b</sup> Fraction of the intravascular apo-LDL catabolized each day: (a) calculated from the plasma die-away curve; (b) calculated from the U/P ratio.

<sup>c</sup> Calculated from the second (c) exponential of the plasma die-away curve. (c) Represents the biological half-life of apo-LDL.

|              |                                | GR                           |                         |                                | DJ                           |                         |                                | SS                           |                         |
|--------------|--------------------------------|------------------------------|-------------------------|--------------------------------|------------------------------|-------------------------|--------------------------------|------------------------------|-------------------------|
| Time<br>(hr) | Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>e</sup> | Urine<br>Volume<br>(ml) | Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>c</sup> | Urine<br>Volume<br>(ml) | Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>e</sup> | Urine<br>Volume<br>(ml) |
| "0"          | 36678                          |                              |                         | 33597                          |                              |                         | 28075                          |                              |                         |
| 1            | 35893                          |                              |                         | 33550                          |                              |                         | 27172                          |                              |                         |
| 2            | 34456                          |                              |                         | 31994                          |                              |                         | 25644                          |                              |                         |
| 4            | 30767                          |                              |                         | 28212                          |                              |                         | 23015                          |                              |                         |
| 8            | 27756                          |                              |                         | 25435                          |                              |                         | 20425                          |                              |                         |
| 12           | 26140                          |                              |                         | 23411                          |                              |                         | 19184                          |                              |                         |
| 24           | 20612                          | 18353                        | 2290                    | 16616                          | 29545                        | 1440                    | 13440                          | 39825                        | 850                     |
| 32           | 17557                          |                              |                         | 14390                          |                              |                         | 11496                          |                              |                         |
| 48           | 13388                          | 29056                        | 1649                    | 9371                           | 37274                        | 1390                    | 7840                           | 34640                        | 1080                    |
| 56           | 11116                          |                              |                         | 8699                           |                              |                         | 6939                           |                              |                         |
| 72           | 8887                           | 12966                        | 2028                    | 6295                           | 26691                        | 1060                    | 5010                           | 20394                        | 1100                    |
| 96           | 6205                           | 12147                        | 1990                    | 4100                           | 15689                        | 1200                    | 3577                           | 10148                        | 1450                    |
| 120          | 4346                           | 8992                         | 1783                    | 2983                           | 8417                         | 1080                    | 2523                           | 6105                         | 1130                    |
| 144          | 3299                           | 11669                        | 1063                    | 2157                           | 6139                         | 1010                    | 1904                           | 6260                         | 740                     |
| 168          | 2501                           | 7526                         | 1110                    | 1628                           | 3532                         | 1380                    | 1473                           | 5044                         | 650                     |
| 192          | 1909                           | 3596                         | 1991                    | 1984                           | 2553                         | 1470                    | 1005                           | 8111                         | 620                     |
| 916          | 1369                           | 2536                         | 1940                    | 943                            | 2013                         | 980                     | 839                            | 2475                         | 720                     |
| 240          | 1154                           | 2023                         | 1780                    | 762                            | 1730                         | 1150                    | 677                            | 1580                         | 860                     |
| 264          | 896                            | 1151                         | 2300                    | 613                            | 1032                         | 1410                    | 567                            | 948                          | 1350                    |
| 288          | 692                            | 9914                         | 980                     | 528                            | 1375                         | 985                     | 503                            | 912                          | 1050                    |
| 819          | 628                            | 859                          | 2120                    | 433                            | 735                          | 1390                    | 321                            | 624                          | 1230                    |
| 336          | 498                            | 761                          | 1881                    | -                              |                              | _                       |                                |                              | _                       |
|              |                                | FC                           |                         |                                | HS                           |                         |                                | SP                           |                         |
| Time<br>(hr) | Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>e</sup> | Urine<br>Volume<br>(ml) | Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>e</sup> | Urine<br>Volume<br>(ml) | Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>e</sup> | Urine<br>Volume<br>(ml) |
| "0"          | 40362                          |                              |                         | 21519                          |                              |                         | 32716                          |                              |                         |
| 1            | 38701                          |                              |                         | 21058                          |                              |                         | 31336                          |                              |                         |
| 2            | 39523                          |                              |                         | 20283                          |                              |                         | 32439                          |                              |                         |
| 4            | 34688                          |                              |                         | 18323                          |                              |                         | 30402                          |                              |                         |
| 8            | 33177                          |                              |                         | 16301                          |                              |                         | 27357                          |                              |                         |
| 12           | 29331                          |                              |                         | 14863                          |                              |                         | 26242                          |                              |                         |
| 24           | 22871                          | 25570                        | 1267                    | 11498                          | 28542                        | 1935                    | 23423                          | 14323                        | 1386                    |
| 32           | 20705                          |                              |                         | 9625                           |                              |                         | 20905                          |                              |                         |
| 48           | 14593                          | 39854                        | 1075                    | 6636                           | 31965                        | 821                     | 17288                          | 26531                        | 985                     |
| 56           | 13784                          |                              |                         | 5769                           |                              |                         | 15407                          |                              |                         |
| 72           | 10538                          | 34648                        | 1285                    | 4392                           | 21000                        | 1222                    | 13243                          | 25352                        | 828                     |
| 96           | 7528                           | 20023                        | 2275                    | 3008                           | 13795                        | 1215                    | 10044                          | 14564                        | 1160                    |
| 120          | 5567                           |                              |                         | 2317                           | 7066                         | 1095                    | 8295                           | 12226                        | 862                     |
| 144          | 4486                           | 10254                        | 1375                    | 1781                           | 6316                         | 845                     | 5896                           | 12463                        | 985                     |
| 168          | 3489                           | 4162                         | 2845                    | 1413                           | 3982                         | 1195                    | 4782                           | 9230                         | 940                     |
| 192          | 2718                           | 6231                         | 1020                    | 1113                           | 3516                         | 855                     | 4017                           | 5854                         | 985                     |
| 216          | 2206                           | 5143                         | 1115                    | 902                            | 2464                         | 1285                    | 3269                           | 3834                         | 1423                    |
| 240          | 1873                           | 1777                         | 1885                    | 764                            | 1771                         | 1282                    | 2814                           | 3199                         | 905                     |
| 264          | 1403                           | 2344                         | 1855                    | 659                            | 1183                         | 1392                    | 2298                           | 3064                         | 930                     |
| 288          | 1258                           | 2011                         | 1747                    | 544                            | 839                          | 1735                    | 1837                           | 1203                         | 1482                    |
| 312          | 987                            | 1159                         | 2035                    | 430                            | 881                          | 1622                    | 1684                           | 1360                         | 1120                    |
| 336          | 827                            | 1562                         | 1187                    | 390                            | 830                          | 1420                    | 1460                           | 1846                         | 1450                    |

<sup>a</sup> 60% counting efficiency, 60-300 window at 80% gain.
<sup>b</sup> Per 2 ml counted.
<sup>c</sup> Per 5 ml counted.

JOURNAL OF LIPID RESEARCH

Ē

|                                | МН                           |                         | НЈ                             |                              |                         |  |  |  |
|--------------------------------|------------------------------|-------------------------|--------------------------------|------------------------------|-------------------------|--|--|--|
| Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>c</sup> | Urine<br>Volume<br>(ml) | Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>e</sup> | Urine<br>Volume<br>(ml) |  |  |  |
| 42574                          |                              |                         | 35895                          |                              |                         |  |  |  |
| 39300                          |                              |                         | 35178                          |                              |                         |  |  |  |
| 37687                          |                              |                         | 33421                          |                              |                         |  |  |  |
| 36771                          |                              |                         | 31085                          |                              |                         |  |  |  |
| 34049                          |                              |                         | 26669                          |                              |                         |  |  |  |
| 31480                          |                              |                         | 24547                          |                              |                         |  |  |  |
| 23462                          | 25233                        | 1725                    | 21328                          | 12057                        | 2210                    |  |  |  |
| 20527                          |                              |                         | 17880                          |                              |                         |  |  |  |
| 15915                          | 36268                        | 1625                    | 13585                          | 10427                        | 2625                    |  |  |  |
| _                              |                              |                         | 11493                          |                              |                         |  |  |  |
| 11605                          | 35245                        | 1015                    | 9191                           | 9108                         | 4105                    |  |  |  |
| 8281                           | 18605                        | 1627                    | 7280                           | 6444                         | 1605                    |  |  |  |
| 6533                           | 8989                         | 2345                    | 5124                           | 4546                         | 2750                    |  |  |  |
| 4940                           | 10536                        | 1407                    | 3899                           | 4186                         | 2425                    |  |  |  |
| 4031                           | 3848                         | 3205                    | 3021                           | 2524                         | 2765                    |  |  |  |
| 3053                           | 3657                         | 9455                    | 2590                           | 1523                         | 3205                    |  |  |  |
| 9548                           | 3186                         | 2905                    | 2000                           | 1318                         | 2820                    |  |  |  |
| 1875                           | 8071                         | 1460                    | 1681                           | 637                          | 3930                    |  |  |  |
| 1606                           | 9114                         | 9175                    | 1401                           | 574                          | 3915                    |  |  |  |
| 1354                           | 056                          | 3690                    | 1915                           | 561                          | 3385                    |  |  |  |
| 1074                           | 950<br>975                   | 3595                    | 1088                           | 458                          | 3575                    |  |  |  |
| 958                            | 1103                         | 2300                    | 975                            | 301                          | 3415                    |  |  |  |
|                                | ТК                           |                         |                                | GS                           |                         |  |  |  |
|                                |                              | Urine                   |                                |                              | Urine                   |  |  |  |
| Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>e</sup> | Volume<br>(ml)          | Plasma<br>Counts <sup>ab</sup> | Urine<br>Counts <sup>e</sup> | Volume<br>(ml)          |  |  |  |
| 33944                          | ·                            |                         | 23168                          |                              |                         |  |  |  |
| 31826                          |                              |                         | 22131                          |                              |                         |  |  |  |
| 32420                          |                              |                         | 21659                          |                              |                         |  |  |  |
| 29386                          |                              |                         | 21569                          |                              |                         |  |  |  |
| 26570                          |                              |                         | 18083                          |                              |                         |  |  |  |
| 23689                          |                              |                         | 16458                          |                              |                         |  |  |  |
| 19254                          | 40736                        | 1465                    | 13127                          | 18188                        | 1865                    |  |  |  |
| 15255                          |                              |                         | 11181                          |                              |                         |  |  |  |
| 11768                          | 54164                        | 930                     | 8309                           | 33686                        | 765                     |  |  |  |
| 9785                           |                              |                         | 7320                           |                              |                         |  |  |  |
| 7534                           | 39239                        | 925                     | 5528                           | 25819                        | 1325                    |  |  |  |
| 5209                           | 26684                        | 1230                    | 3876                           | 15534                        | 1575                    |  |  |  |
| 3812                           | 10036                        | 1885                    | 2972                           | 9710                         | 1285                    |  |  |  |
| 2870                           | 9691                         | 1370                    | 2348                           | 7204                         | 1205                    |  |  |  |
| 2810                           | 4194                         | 2165                    | 1797                           | 5475                         | 1215                    |  |  |  |
| 1665                           | 6733                         | 985                     | 1435                           | 3378                         | 1495                    |  |  |  |
| 1336                           | 4637                         | 645                     | 1155                           | 9898                         | 1605                    |  |  |  |
| 1098                           | 9946                         | 1680                    | 888                            | 2023                         | 1985                    |  |  |  |
| 098                            | 1550                         | 9095                    | 687                            | 1581                         | 1100                    |  |  |  |
| 940<br>791                     | 1046                         | 1145                    | 583                            | 1109                         | 1695                    |  |  |  |
| 610                            | 1625                         | 1195                    | 505                            | 808                          | 1495                    |  |  |  |
| 019                            | 1035                         | 1133                    | 510                            | 050                          | 1740                    |  |  |  |

BMB

**OURNAL OF LIPID RESEARCH** 



Fig. 2. Comparison of parameters of LDL metabolism between Indians and Caucasians. The absolute synthetic rate of apo-LDL is significantly lower in Indians. Horizontal line represents mean value.

The metabolic parameters of LDL metabolism and LDL cholesterol levels in our Caucasians are comparable to the values previously reported in normolipidemic subjects by Langer, Strober, and Levy (14), Sigurdsson, Nicoll, and Lewis (30), and Bilheimer et al. (31). HDL cholesterol values in our Caucasians are consistent with those reported by Fredrickson and Levy (32). Apo-LDL values determined during the course of these studies in Caucasians are in accord with values in normolipidemic subjects studied by Albers, Cabana, and Hazzard (33) using a radioimmunoassay technique.

Statistically significant differences in LDL metabolism and lipoprotein levels were demonstrated in the American Indians. The absolute catabolic rate of apo-LDL, expressed as mg/day or mg/m<sup>2</sup> per day, was significantly lower in the Indians in spite of a greater degree of obesity than in the Caucasians, whereas no differences were noted in the fractional catabolic rate of apo-LDL, biological half-life of apo-LDL (calculated from the second exponential of the plasma die-away curve), and the percentage of exchangeable apo-LDL in the intravascular space.

The Indian group had higher plasma triglyceride levels than the Caucasians. The higher levels are probably the result of an increased synthesis of VLDL related to their greater degree of obesity (34). If so, accelerated VLDL and triglyceride synthesis might have been expected to result in increased LDL synthesis in the more obese Indian group. VLDL turnover studies, however, are needed to determine this with certainty, since an alternate pathway might be postulated to explain the higher triglyceride levels in the face of lower apo-LDL synthesis among the Indians.

The diminished synthesis of apo-LDL cannot be accounted for by either differences in plasma volume or differences in fractional catabolic rate. Since the absolute catabolic rate of LDL is equal to the absolute synthetic rate in steady-state conditions, it is clear that



**Fig. 3.** LDL and HDL cholesterol expressed as percentage of total cholesterol. Indians have a significantly lower proportion of LDL cholesterol and higher proportion of HDL cholesterol for a similar level of total cholesterol than Caucasians.

American Indians both catabolize less apoprotein and synthesize less apoprotein than Caucasians. If the synthetic rate of apo-LDL were similar in Caucasians and southwestern American Indians, a reduction in the absolute catabolic rate in the latter group would be accompanied by an accumulation of plasma apo-LDL. However, the reduced levels of apo-LDL in the Indians reflect both the diminished synthetic rate of apo-LDL as well as the correspondingly lower absolute catabolic rate. Significant differences in apo-LDL pool size between Indians and Caucasians were not associated with changes in the fractional catabolic rate, but were well correlated with absolute synthetic rate (Fig. 5). These data are also consistent with the observation that the fractional catabolic rate of apo-LDL is independent of the apo-LDL pool size (14).

The lower synthetic rate of apo-LDL in the Indians probably accounts for the lower plasma levels of LDLcholesterol and, in part, for the higher ratio of HDL/ LDL cholesterol found in the Indians than in the Caucasians. The apo-LDL synthetic rate (mg/m<sup>2</sup> per day) correlates with the plasma apoprotein levels in both the Indians (r = 0.48) and Caucasians (r = 0.47), which in turn are highly correlated with the plasma LDL cholesterol levels (r = 0.97 in Indians; 0.98 in



**Fig. 4.** Urinary-plasma ratio of <sup>125</sup>I-labeled LDL excretion in both Indians and Caucasians. After an initial delay, peak excretion was followed by a slight decline. U/P ratios provided an independent estimate of fractional catabolic rate (fraction of intravascular pool of LDL catabolized daily) of apo-LDL.

38 Journal of Lipid Research Volume 20, 1979



**Fig. 5.** Relationship between absolute synthetic rate of apo-LDL and apo-LDL pool size. The smaller apo-LDL pool size in Indians is a result of a diminished synthetic rate.

Caucasians). Thus apo-LDL synthesis is related to LDL cholesterol levels in both races (r = 0.59 in Indians; 0.56 in Caucasians).

Although the total plasma cholesterol level was similar in the two groups, the findings of low LDL cholesterol fractions in the Indians is consistent with the levels reported in a population of Tarahumara Indians living in Mexico (35). Our observation of similar total cholesterol levels between the Indians and Caucasians in the age range studied is consistent with the report that median cholesterol levels are similar between Pimas and Caucasians in the third decade (11). After this age, total cholesterol levels become significantly higher in Caucasians but remain similar in the Indians, suggesting that the differences in apo-LDL synthesis and LDL cholesterol levels, which we have demonstrated, may be accentuated in older age groups.

The higher levels of HDL cholesterol found in Indians are also of interest in view of the lower rate of CAD in the Indians. Recent evidence suggests that low HDL cholesterol levels may predispose to the development of coronary heart disease (17-19) and a role for HDL in promoting tissue clearance of cholesterol has been suggested by studies of Tangier disease in which HDL levels are low or absent (36). Although firm conclusions concerning the reasons for the infrequency of ischemic heart disease among the Indians cannot be made with certainty, the lower apo-LDL synthetic rates, lower LDL cholesterol levels, and elevated HDL cholesterol levels found in the southwestern American Indians are consistent with the hypothesis that these measures have an important role in the genesis of coronary artery disease.

The authors express their thanks to Robert Collins, Ronald Meyer, and Allen Woolf for excellent technical assistance; to Drs. David Bilheimer, Scott Grundy, and Walter Shelley for manuscript review and helpful suggestions; to Drs. Peter Savage and Stephen Aronoff for statistical assistance; to Emma Begay for excellent secretarial assistance; and to the dietary and nursing staff of the Phoenix Clinical Research Section.

Manuscript received 15 December 1977; accepted 11 June 1978.

## REFERENCES

- 1. Gilbert, J. 1955. Absence of coronary thrombosis in Navajo Indians. Calif. Med. 82: 114-115.
- Page, I. H., L. A. Lewis, and J. Gilbert. 1956. Plasma lipids and protein and their relationship to coronary disease among Navajo Indians. *Circulation*. 13: 675-679.
- Straus, R., J. Gilbert, and M. Wurm. 1959. Biochemical studies in full-blooded Navajo Indians. *Circulation*. 19: 420-423.
- 4. Streeper, R. B., R. U. Massey, G. Liu, C. H. Dillingham, and A. Cushing. 1960. An electrocardiographic and autopsy study of coronary heart disease in the Navajo. *Dis. Chest.* 38: 305-312.
- 5. Leo, T. F., J. J. Kelly, and H. A. Eder. 1958. Cardiovascular survey in a population of Arizona Indians. *Circulation*. 18: 748(a).
- Abraham, S., and D. C. Miller. 1959. Serum cholesterol levels in American Indians. *Public Health Rep.* 74: 392– 398.
- Fulmer, H. S., and R. W. Roberts. 1963. Coronary heart disease among the Navajo Indians. Ann. Intern. Med. 59: 740-764.
- Sievers, M. L. 1967. Myocardial infarction among southwestern American Indians. Ann. Intern. Med. 67: 800-807.
- 9. Sievers, M. L. 1968. Serum cholesterol levels in southwestern American Indians. J. Chronic Dis. 21: 107-115.
- Sievers, M. L. 1966. Disease patterns among southwestern Indians. *Public Health Rep.* 81: 1075-1083.
- Savage, P. J., R. F. Hamman, G. Bartha, S. Dippe, M. Miller, and P. H. Bennett. 1976. Serum cholesterol levels in American (Pima) Indian children and adolescents. *Pediatrics*. 58: 274-282.
- Bennett, P. H., T. A. Burch, and M. Miller. 1971. Diabetes mellitus in American (Pima) Indians. *Lancet.* 2: 125-128.
- Ingelfinger, J. A., P. H. Bennett, I. M. Liebow, and M. Miller. 1976. Coronary heart disease in the Pima Indians: electrocardiographic findings and post mortem evidence of myocardial infarction in a population with a high prevalence of diabetes mellitus. *Diabetes.* 25: 561– 565.
- 14. Langer, T., W. Strober, and R. I. Levy. 1972. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J. Clin. Invest. 51: 1528-1536.
- Reichl, D., L. A. Simons, and M. B. Myant. 1974. The metabolism of low density lipoprotein in a patient with familial hyperbetalipoproteinaemia. *Clin. Sci. Mol. Med.* 47: 635-638.
- Simons, L. A., D. Reichl, M. B. Myant, and M. Mancini. 1975. The metabolism of the apoprotein of plasma low density lipoprotein in familial hyperbetalipoproteinaemia in the homozygous form. *Atherosclerosis*. 21: 283– 298.
- 17. Miller, G. J., and M. E. Miller. 1975. Plasma high density lipoprotein concentration and development of ischemic heart disease. *Lancet.* 1: 16–19.
- Berg, K., A. L. Borresen, and G. Dahlen. 1976. Serum high-density lipoprotein and atherosclerotic heart disease. *Lancet.* 1: 499-501.
- 19. Rhoads, G. G., C. L. Gulbrandsen, and A. Kagan. 1976.

Serum lipoproteins and coronary heart disease in a population study of Hawaii-Japanese men. N. Engl. J. Med. **294:** 293-298.

- Lowry, O. H., M. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
- Albers, J. J., J. L. Adolphson, and W. R. Hazzard. 1977. Radioimmunoassay of human plasma Lp(a) lipoprotein. J. Lipid Res. 18: 331-338.
- 22. McFarlane, A. S. 1958. Efficient trace labelling of protein with iodine. *Nature (London).* 182: 53.
- Kwiterovich, F. O., Jr., H. R. Sloan, and D. S. Fredrickson. 1970. Glycolipids and other lipid constituents of normal human liver. J. Lipid. Res. 11: 322-330.
- 24. The Pharmacopeia of the United States of America. 1970. Mack Publishing Co., Easton, PA. 18th edition. 851-857, 886-887.
- 25. Total cholesterol by extract method 16 a. In AutoAnalyzer II Manual. 1972. Technicon Instruments Co., Tarrytown, NY.
- Manual of Laboratories Operations. Lipid Research Clinics Program: Lipid and Lipoprotein Analysis. 1974. U.S. Department of Health, Education and Welfare. Publication No. 75-628.
- Matthews, C. M. E. 1957. The theory of tracer experiments with <sup>131</sup>I-labelled plasma proteins. *Phys. Med. Biol.* 2: 36-53.
- Nosslin, B. 1964. In Metabolism of Human Gamma Globulin (yss globulin). S. B. Anderson, editor. F.A. Davis Co., Philadelphia. 103-120.
- Service, J. 1972. A Users Guide to the Statistical Analysis System by A. J. Barr and J. H. Goodnight. Student Supply Stores, Raleigh, NC.
- Sigurdsson, G., A. Nicoll, and B. Lewis. 1975. Conversion of very low density lipoprotein to low density lipoprotein. A metabolic study of apolipoprotein B kinetics in human subjects. J. Clin. Invest. 56: 1481-1490.
- Bilheimer, D. W., J. L. Goldstein, S. M. Grundy, and M. S. Brown. 1975. Reduction in cholesterol and low density lipoprotein synthesis after portacaval shunt surgery in a patient with homozygous familial hypercholesterolemia. J. Clin. Invest. 56: 1420-1430.
- Fredrickson, D. Š., and R. I. Levy. 1972. Familial hyperlipoproteinemia. *In* The Metabolic Basis of Inherited Disease. J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, editors. McGraw-Hill, Inc., New York. 3rd edition. 28: 545-614.
- Albers, J. J., V. G. Cabana, and W. R. Hazzard. 1975. Immunoassay of human plasma apolipoprotein B. *Metabolism.* 24: 1339–1351.
- Robertson, R. P., D. J. Gavareski, J. D. Henderson, D. Porte, and E. L. Bierman. 1973. Accelerated triglyceride secretion: a metabolic consequence of obesity. J. Clin. Invest. 52: 1620-1626.
- 35. Connor, W. E., M. C. Urban, R. W. Connor, R. W. Wallace, M. R. Malinow, and H. R. Casdorph. 1976. The serum lipids, lipoproteins and diet in the Tarahumara Indians of Mexico. *Clin. Res.* 24: 155a.
- Fredrickson, D. S., A. M. Gotto, and R. I. Levy. 1972. Familial lipoprotein deficiency. *In* The Metabolic Basis of Inherited Disease. J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, editors. New York, McGraw-Hill, Inc., New York. 3rd edition. 26: 493-530.

**IOURNAL OF LIPID RESEARCH**